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Although various types of stable disilenes (silicon-silicon doubly
bonded compounds) have been synthesized and their structure and
reactions have been investigated extensively,1 very few studies have
been devoted to the synthesis of stable conjugated disilenes, silicon
congeners of polyenes; only two stable tetrasila-1,3-dienes,1a2a-f

and1b,2g have been reported to date (Chart 1). Rather unexpectedly,
these tetrasila-1,3-dienes adopt a synclinal conformation around the
central Si-Si single bond in the solid states. During the course of
our recent studies of unsaturated silicon compounds such as trisila-
allene, silanechalcogenones, silaketenimines, etc.,3 we have syn-
thesized a novel tetrasila-1,3-diene3 having an anticlinal conforma-
tion in the solid state by utilizing isolable dialkylsilylene24 as a
building block. Thermolysis and photolysis of3 showed highly
selective cleavage of the SidSi double bond giving cyclotrisilene
45 and silylene2, in contrast to the unimolecular reactions of buta-
1,3-dienes.6

Tetrasila-1,3-diene3 was synthesized as air-sensitive red crystals
in 13% yield by the reduction of tribromodisilane5, which was
prepared by the reaction of silylene2 with Me3SiSiBr3,10 with
sodium metal in toluene at room temperature (eq 1). Tetrasiladiene
3 was characterized by NMR spectroscopy, MS, elemental analysis,
and X-ray crystallography.11,12

The X-ray analysis of3 has shown that the tetrasiladiene skeleton
is not planar but highly twisted (Figure 1). However, in contrast to
1a and1b having a synclinal conformation,3 adopts an anticlinal
conformation with the Si1-Si2-Si3-Si4 dihedral angle of
122.56(7)°. The SidSi double bond distances of3 are 2.1980(16)
and 2.2168(16) Å and the central Si-Si single bond distance is
2.3400(15) Å.

The UV-vis spectrum of tetrasila-1,3-diene3 shows the longest-
wavelength absorption maximum at 510 nm (ε 1200) at 77 K in a
3-methylpentane glass matrix assignable to aπ f π* transition
band. The maxima is comparable to those of1a (518 nm)2a and1b
(531 nm)2g even though there are no aromatic substituents in3,
suggesting significant conjugation between the twoπ(SidSi)
systems.13

The29Si resonances of central and terminal unsaturated Si nuclei
of 3 were observed at 9.3 and 210.2 ppm.15 The1H NMR spectrum
showing four singlet signals due to trimethylsilyl groups on one
silacyclopentane ring at room-temperature suggests that the anti-
clinal geometry of SidSi-SidSi framework in3 is maintained in
solution.

Thermolysis of3 at 80 °C in benzene for 3 h afforded4 and
cyclic silene6 in high yields, together with complete consumption
of 3 as determined by1H NMR spectroscopy (Scheme 1). Irradiation
of 3 in benzene with a filtered high-pressure mercury arc lamp (λ
> 390 nm) for 2 h afforded4 and silepin7 in 51 and 43% yields,
respectively, after 89% consumption of3 (Scheme 1). The structure
of 4 was identified by NMR spectroscopy, MS, elemental analysis,
and X-ray structural analysis.16 Compounds6 and7 are known to
form quantitatively during the thermolysis3a and photolysis17 of
silylene2 in benzene, respectively. As shown in eq 2, the formation
of cyclotrisilene4 would be explained by the facile intramolecular
silylene insertion into the SidSi bond of disilenylsilylene8 formed
via a SidSi double bond dissociation.

Because a number of thermal and photochemical dissociation
reactions of disilenes giving the corresponding two silylenes have
been reported,14,18the present reactions of3 giving 8 and2 are not
unexpected. However, theoretical calculations of the Si4R6 systems
(R ) H, Me)19 have revealed that the tetrasila-1,3-dienes are much
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Chart 1

Figure 1. Molecular structure of3. In an asymmetric unit, two crystallo-
graphically independent molecules were observed. Since they have almost
the same structural characteristics, only the structure of one molecule is
shown. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn
at the 50% probability level. Selected bond lengths (Å) and a dihedral angle
(deg): Si1-Si2, 2.1980(16); Si2-Si3, 2.3400(15); Si3-Si4, 2.2168(16);
Si1-Si2-Si3-Si4, -122.56(7).
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more unstable than the corresponding valence isomers such as
bicyclo[1.1.0]tetrasilanes or cyclotetrasilenes; the calculated activa-
tion energies for the isomerization of tetrasila-1,3-diene to these
valence isomers are known to be less than 10 kcal‚mol-1.19a On
the other hand, the theoretical dissociation energy of the SidSi
double bond in 1,1,4,4-tetramethyl-2,3-bis(silyl)-tetrasila-1,3-diene
(3′) is 48.5 kcal‚mol-1 at the B3LYP/6-311++(d,p) level.20 The
isomerization to the valence isomers or dimerization via the [4+2]
cycloaddition would be suppressed by severe steric repulsion
between bulky substituents of3 during the reactions.21 The dissocia-
tion energy of the double bonds in3 may be lowered by the steric
strain than that for3′ to make feasible the dissociation in benzene
at reflux.22 Preference of the SidSi double bond cleavage to the
central Si-Si single bond cleavage is a straightforward indication
of the smaller bond dissociation energy of the double bond than
that of the single bond in3 as predicted by the CGMT model.23
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